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Non-Technical Summary

The cbject of this report is the mathematical formulation and
analysis of a class of economic processes. The processes have a
particular common structure that can be exploited to facilitate
computation of optimal policies and to obtain insight into the
behavior of the process after it has been in operation for a period
of time. Specifically, we shall analyze models for Capital Budgeting,
Price Speculation, Warehouse Operation, and Economic Growth.

To illustrate the type of result obtained we first focus on a
capital budgeting problem. Suppose that at a given point of time a
firm has a certain amount of cash that it must allocate between present
dividend payments and a number of investment opportunities which have
cash-flow profiles representing future payouts to the firm. The net
cash-flow from a given investment in a period subsequent to initiation
of the project must be non-negative but could be represented by =a
random variable. In addition, the amount invested in any given project
may have an upper limit placed on it, as may the amount withdrawn in
any period. The object is to devise a schedule of dividends and
investments to maximize the discounted sum of withdrawals. A finite
computational technique is presented that finds the optimal schedule
for the case of a finite number of investment periods and also for the
case wherein the number of investment periods remaining can be
arbitrarily large. It is also shown that the expected return from the
entire process is directly proportional to the amount of resources

one starts with.



The assumption placed upon the cash-profile of the investments in
the model Just discussed restricts an investment to be of the point-input
stream-output type (i.e. net investment expenditure is not required
in any period subsequent to the first). In addition, the objective
criterion restricts the stockholders valuation of dividends to be
linear or proportional over all magnitudes of payout and thus does not
admit any decreasing marginal utility on the stockholders part. An
algorithm utilizing the principles of generalized programming is
derived for solving the more general problem wherein these two
assumptions are relaxed. The method avolds the necessity of solving
a nonlinear problem by reducing the solution technique to one
involving the solution of a sequence of Linear Programming problems.

Another process considered in this report is one corresponding to
a model of economic growth. This is a process wherein at each point
in time a soclety must allocate quantities of available commodities,
e.g. (steel, manpower, land) to present consumption, or to & number
of industries each of which produce one of the commodities for the next
time periocd. It is assumed that each industry has a spectrum of
processes available to 1t, and the objective is to allocate commodities
into production and consumption in such a way as to maximize the
discounted sum of consumption utility derived by the society. It is
shown that under certain assumptions a specific set of processes,
including precisely one process from each industry, can be ldentified
where these are the processes that must be employed when following an
optimal policy if the economy has been in operation for a sufficiently
long time.
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CHAPTER I

INTRODUCTION TO THE CLASS OF
PROCESSES TO BE STULIED

1l. DNotation and Description of the Process

In order to set the stage for discussion of the multistage decision
process we must define several concepts and pileces of notation.

We assume that the condition of our process may be described at any
point in time by an element x of the normed linear space X which will
be referred to as the state space. Examples of interesting state spaces
are the Euclidean spaces of M dimensions, (EM), and the space of
bounded infinite sequences (z”).

At each decision point in the stream of time we are required to apply
a control v +to alter the future progress of the process as described by
the state vector and, possibly, to receive a current benefit. We assume
that the control (decision) space is a subset of gf, i.e., the control
variable v may be represented by a P-dimensional vector 1 < P < ». We
also assume that the reward (or negative of the cost) from applying
control v at time t is given by Ut("), a concave functional defined
on EP. Employing standard notation we let fJ(R,S) represent the set of
bounded linear transformations from the normed linear vector space (NLVS)

R to the NLVS S.

We thus define the transformations:
A ecﬁ(EP,EM) 1< M<®
D, e&(XE")

T, e L(X x EP,X)



and the constant vector B, € o In the above the subscript t is an

index of elapsed time and takes values from a set 7. If the total

number of decision stages to be considered is the finite number N, then
7 1is the set of integers (1,2,3,...,N}. 1If there are an infinite number
of decision stages to be considered, then 7 1is the set of positive
integers.

If we let xt be the state of the process at time t, and vt be
the control applied at time t, we may describe the process by the 4dif-
ference equation:

X =T (x,v) for t ey
where
t) for t eV

+ B, V> 0} = Vv, (x

t
Each Vt(-) represents the feasible control region at time t. We should
note that unlike many formulations of control problems the feasible region
is a function both of time and state.

If the objective is to maximize the sum of the rewards received at

each stage of the process, the optimization problem may be stated as:

maximize T U (v,)
bey tt 't
subject to
T+
x0Tt o Tt(xt,vt) for t ey
(1.1) ve € Vt(xt) for t ey
xl = X the initial location in state space.

It is clear that the problem formulated above includes the usual




formulation of a control problem with linear state transformations, since
a finite number of the values of the state variables can be included in
the domain of definition of the value functional by appropriate manipula-
tions of At’ Dt’ and Bt' Additionally the dimension of the spaces given
by P and M could be made to depend on the time parameter t without
changing the underlying structure. This will not be done here due to

the notational complications.

The abstract formulation presented above encompasses many statements
of concrete problems. Illustrations of such problems will be presented
following the development of the pertinent segments of the theory. Our
objective throughout this work will be to analyze versions of the general
problem to arrive at the structure underlying the solution to the problem

and to present computational algorithms wherever possible.

2. PFormulation of a Stochastic Model

In the model formulated in Section 1 we assumed a deterministic
environment existed and that, given any particular time, state, and
action the new state would be precisely determined. In this section we
formulate an interesting generalization of this model where the new state
is specified by a prcbability distribution of possibie states.

Retaining the notation of the previous section we introduce a
sequence of independent random vectors <rt>£€7. At each decision point,
t, we assume that the current state of the system Xt and the feasible
control region Vt(-), a function of the state variable, are known. The
state transition rule Tt(-,-) is now made to depend upon the ocutcome of

t+1 t .t t).

the random vector rU; thus, x = Tt(x’,v ,T

Using the above ideas, problem (1.1) can be restated in the form:

(WS}



(1.2) maximize E E[Ut(vt)}

t ey
subject to
t+l
xH = Tt(xt,vt,rt) t ey
t t
v’ o€ Vt(x ) t ey
1
X =X,

where E{+] represents the expectation operator in this case taken over

the joint distribution of the random vector sequence <rt>t€7 . The

transition rule Tt(',',") is required to be linear in xt and vt,

but not in rt.

3. Techniques for Solution of the Finite Horizon Model

If we do not wish to make any assumptions regarding the form of the
various transformations it would not seem that enough structure is avail-
able to yield analytic insight into the properties of the solution. How-
ever, the main characteristics of linearity lead one to suspect that
linear programming could be used to obtain numerical solutions, provided
Ut(-) were linear for all + € y. To do this we need the following
simple lemma:

Lemma 3.1. Let both X and V be a NIVS. Let T € £(X x V,X).
Then there are transformations
T e £(X,X)
and
™ e £(T,T)

such that

T(x,v) = T'(x) + T"(v) for all (x,v) € z xV .




Furthermore, the decomposition is unique.

Proof: Let

T'(x) = ™(x,0) for all x €

I>4t

T"(v)

T(0,v) for all v eV .

The required properties follow from the continuity and linearity
of T. Q.E.D.
Thus, we see that the control problem posed in (1.1) is formally

~equivalent to a linear programming problem in the variables

2 T 1 2
(X }X3J° T)

XL,V L,V 0.,V where xt € Z and vt € EP for all t and

X 1s finite dimensional,



CHAPTER II

A CLASS OF PROBLEMS WITH LINEAR

UTTLITY FUNCTIONS AND FINITE HORIZONS

1. An Algorithm for a Closed Form Solution

The model to be considered in this chapter is the one introduced in
Chapter I with the utility function in each period a bounded linear
functional defined on the control space EP, and the time horizon finite,
i.e., y = {1,2,...,N}. The vutility function at time +t 1is a linear
function denoted by the P-dimensional vector Ctn

We shall now explore the possibilities of obtaining analytic solu-
tions to problem (1.1) if we specialize the structure of the transforma-

tions.

Consider the LF problem:

Max c(v)
A( V) = b
v > 0.
Define the ordered pairs of sets <(C,8>, where CCZ<Q(EP,E1) and
8 M
C E  as follows:
For all ¢ € C optimal basic feasible sets of activities
are independent of b as long as b € 8 . Call such a

pair <C,B > a stable set of A.

Clearly, pairs of the form <C,B8> exist for any matrix A (they may be
singletons for which an optimal solution exists) and there may be many
different combinations of sets satisfying the requirements. For particular

examples sensitivity analysis could be employed to determine the sets of
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interest. For certain classes of matrices, A, it is possible to find
ordered pairs < C,8> such that corresponding sets of the form C
and 3 are very large. For instance, if A has Leontief structure (see
the first example discussed in Section 2 of this chapter), then the set

C can be all of gf(EP,El) and the corresponding & the non-negative
orthant of EM.

In describing the statement of the control problem and in relating
the abstract formulation to more concrete problems it is more convenient
to employ time subscripts indexing elapsed time. In proving the fol-
lowing theorem it is more convenient to consider the time subscripts as
the number of stages remaining. Since, with a finite horizon, this merely
involves a relabeling of the transformations, none of the structure is
changed. Iletting fN(x) be the return from an N-stage process following
an optimal policy from starting position x, we apply the principle of

optimality (Bellman [4]), and obtain the recursion relations:

(2.1 £ (x) = max c, v bl T SV
) () = (eg(V) + £, 0 T(x,v))
fo(x) =0,

where the subscripts denote the number of periods remaining in the program.
In order to state the linearity theorem we need the following definitions
for a process with N stages remaining.

Iet the sequence < @n, 6n>g=l be a sequence of stable sets of

<a >N
n

e’ and let

R =(xc¢ X: D(x) +B < @]

Let



Ly= 2 B o G h0 G n0 .00 Gy
n:l
and
N 1
— 1 -
KN = = [c + Ln-l o Tn] o A Bn
n:l
where
E At
n=Cn° noDn n=1, ,N
Gn_TgoA oDn+Tr’1 n =1, N
and
En is the matrix of the optimal basis with n periods

remaining where n = 1,...,N.
The transformations TS and Tﬁ are the canonical decompositions of
Tn given by Lemma 1.3.1. We can now state the

Linearity Theorem (Theorem 1): Suppose

1. ¢, € Cl

1
2. fe, +L ;o1 c¢ Cn n=1,2,...,N
3. X € 72N
L. Tn(x,v) € ~Rn—l for all x ¢ 73n and v € Vn(x) s

n=1,2,...,N.
Then fN(x) is an affine functional on z for all x € ’RN and
the optimal choice of positive activities during any stage is independent

of x. Equivalently,

fN(x) = LN(x) + Ky for all x e -EN

where

L, €&(LE) .




Proof: The proof is by induction on the number of periods remain-
ing, denoted by N.
N=1. From (2.1),

fl(x) = max [cl(v)}

veVl(x)

Clearly, for fixed x this is the LP problem

max (e, (v))

subject to

Since ( CJ] Gl) are stable for A , the assumption that c; ¢ C

1 1
allows us to find an optimal basis Al independent of x € ?ll. Thus,
the optimal decision is to have

A=l A=l
v=ATe Dl(x) + A 7By
for the activities corresponding to the columns of Al’ and all other
variables set equal to zero. Thus,
£(x)=c o Ate D (x) + ¢, o Als for xe R, ,
1 1 1 1 1 171 1

and since the class of linear transformations is closed under composition
and addition the result is established.

We now assume the result holds with N-1 stages remaining, and
complete the induction. By assumptions 3 and 4 we see that
TN(x,v) € RILJ_ at all points of X X i that can occur. Thus, using

(2.1) and the induction hypothesis we have:



2.2 £(x) = maX (e (v) + L., o T.(x,0)} + Ky
(2.2) N el (x) N N-1° N N-1
= max W(v)y + L, ;0 Th(x) + K. ..
vev,(x) A N-1~ "N N-1

Note that LN_l can be calculated independently of the decision to be
made with N periods to go.

Again since ( C’NJ GN) are stable for A the assumption that

N)
[cN+ LN 1 ﬁ] € CN enables us to find an optimal basis AN independent
of x € B_. Thus, for all x e R v:Z\i}lo D+ AYB. for the

N ’ N’ N AN N
activities corresponding to AN’ all other activities being operated

at zero level.

In (3.2) we now substitute the optimal solution, obtaining

fy(x) = ey e A‘N Dy(x) + Ly y o [Ty e ZH:II o Dy + Tyl(x)

. " © A
+ KN-l + CN 0 AN BN + LN-1° TN AN BN

or
A-1
_ "
fN(x) = [EN + Ly N (x) + Kgop + [cN +Le g TN] o ABy
Clearly,
LN = EN + LN_l e GN
N
= Z E o G ] o G
-1 M n+l N
and
N 1
_ 19 5T
KN = n§l[cn + Ln—l o Tn] o An Bn . Q.E.D.

Assumption L of the theorem can be weakened somewhat by requiring
T (x,v) e En—l for all x ¢ .Rn’ but only for those vV ¢ Vn(x)

that could correspond to an optimal solution.

10




2. Examples of Processes Satisfying the Conditions of Section 1

In order to illustrate the preceding theorem we shall examine several
examples. It is natural to first look for classes of matrices with large
stable sets. One such class sometimes referred to as Leontief matrices
with substitution is the class of m X p matrices A such that A € A
if and only if for each m X m nonsingular submatrix Ai of A the

existence of a non-zero, non-negative pair of vectors <v,b> such that
Av =D
i

implies that A;l > 0. Thus, we can state a result essentlally observed
by Dantzig [7] as follows:

1f At € N, B, >0 and both Dt and Tt are non-negative transforma-

t
tions for all +t, then the hypotheses of the linearity theorem are sat-

isfied with Ct=EP and i‘-;t

It is easy to see that the capital budgeting problem of Dorfman [9]

the non-negative orthant of EM for all t.

and Manne [14], the warehouse problem of Dreyfus [11], and the price
speculation model of Arrow and Karlin [2] all have the above characteris-
tics. In analyzing the structure of each of these problems the above
authors have essentially first proven a version of the linearity theorem
for the particular problem under investigation. Since the structure of
optimal policies in the warehouse and price speculation models has been
analyzed in the above articles we will use the linearity theorem to analyze
the capital budgeting problem. We will then show how a modification to the
problem which circumvents the all-or-none problem raised by Manne can be
attacked by the preceding theorem even though the resultant sequence of
matrices <A > are no longer formally of the Leontief type. The first

t

version of the capital budgeting problem to be analyzed i1s similar to the

11



Dorfman-Manne formulation and will now be described.

Capital Budgeting

A firm is presented with a sequence of sets of investment opportun-
ities. At each decision point the firm must choose a mix of investment
opportunities from the set currently available. Additionally, the firm
must decide whether or not to pay some portion of its present resources
in dividends.

The state space for such a firm may be described as the couple
(x,Q) where x 1is an element of EN+1, ie., x= (XO’Xl’XE’“"°’XN)’
and each X represents the net cash input i periods from the present
time due to past investments. The investment ﬁossibilities are represent-
ed by the sequence Q = (Ql,Q2,...,QN) where Q is the finite set of

investment opportunities available to use with n periods remaining in

the decision process.

J

An investment opportunity a“ € Q will be considered to be an
n

element of EN, i.e.,

ad - (ai,ag,.yu,a%)

where ai is the cash return of investment aJ, i periods from the
investment date, per unit invested. Note:

M
n

12
Qn = (& ,a ,...,8 '}

The following assumptions are made about the firm and its opportunities:
A”: The firm is self-financing.
A”: Dividends are discounted with discount factor 8 > O.
Returns from investments are proportional to the amount
invested.

12




A x>0, i.e., X >0, n=0,1,2,...
a € Qn = a>0, i.e., a, >0, 1 =1,2,...,N.

A5: The firm's utility function is a linear function of the

dividends paid out.

The problem 1s to choose at each period of time a policy specifying
the amount of current capital to be allocated to each investment op-
portunity and the amount to be paid out in dividends. The objective of
the firm is the maximization of the sum of the discounted value of div-
idend utility. For simplicity in presentation we shall assume that the
value of any income received beyond the planning horizon is zero. A
slight modification to the period zero costing scheme would enable us to
include some discounted value of returns received beyond the planning
horizon.

Let us now make the identifications required to state the problem in
terms of the notation developed for Theorem 1. The decision taken with
n periods remaining, v, » can be represented as a 1 X (Mh+l) vector, the
first component representing the amount of capital consumed in opportunity
i, Similarly, T; = Qn for each n considered as an operator mapping

M

E® into E, B, =0, c =(u,0,...,0), and T =1L, a left-shift op-

}

erator which adjusts the state variable to compensate for an increment of

elapsed time; i.e., if x = (xo,x +>¥%y), then Ix = (x 0).

RE Y ERRFE

Since each An is simply a row of ones, it is clear that each An is of

12%ps -

Leontief type, justifying an application of the linearity theorem,
yielding for all x > 0:

fN(x) = LN(x) a linear functional of x.
Due to the nature of An’ all extreme points of the convex set of pos-
sible decisions at any point in time are vectors with one component a

13



plus one and all other components zero. This, combined with the linear
characteristic of fN(e), vields the all-or-none theorem of Manne [1L4]
since only one of the vj need be positive in an optimal solution.
Thus, either we pay a2 dividend or invest in one best investment at each
decision point. Consequently, if we invest during period n. En = 0,
and if a dividend is paid, En = unD, where D is a 1 x N vector with
the first component a one and all other components zero. Also, Gn = L
if a dividend is paid in pericd »n, and Gn = aCnD + L 1f investment
cpportunity <, is chosen.

Once the linearity of the return function is established it is easy

to see that L .(-), and hence fN(a) take the following form:

N

o N
1 fN(x) = n%OPN_n ux for N >0 and Py = 0.
2° P -1

1

N Cy

PN = mMax [UN, n?l PN—n hnan } for N 2 2
0 “N
3 &, is chosen as the investment maximizing

N i
nzi PN—n unan for 1 = 1,2, ,MN

and PN = uN implies that dividends are paid during period N. An
induction proof of this result can be founc in Appendix A.

Clearly, the calculation cof the sequence <PN> is equivalent to
calculating a sequence of optimal policies, pointing out the result that

the optimal policy is independent of the initial state x. However, the

optimum policy will certainly be dependent on the sequence of sets of

investment opportunities Q-

14




In order to investigate properties of the solution it is clear that
we must focus our attention on the sequence <Pi>' We may interpret Pi
as a shadow price representing the utility of an incremental unit of dis-
counted cash with "1" periods remaining. In particular, PN represents
the utility value of an incremental dollar at the beginning of the plan.
Since the P's are not dependent on the total amount available in any
period, we have constant marginal utility in any period undér an optimal
policy. The linearity of the optimal return function yields an immediate
proof of Mamnne's all-or-none theorenm.

As observed in the paper by Manne [14], the implications of the all-
or-none theorem are rather disturbing since most well-managed firms do
not operate with this type of behavior. As one method of circumventing
this apparent paradox we shall add another restriction to the problem.
Specifically, we require that the firm pay out at least a fixed Propor-
tion p of the capital available in any period. The effect of this
added restriction is to alter the region of feasible control with n

periods remaining to

{{v,s): Vo * Vit eee k=2, Vo~ s =Dz, (v,s) >0},

where s 1is a non-negative slack variable and =z represents the amount
of capital resource available. This change yields an A matrix which is

not of Leontief type since there is a feasible submatrix

1 1]
A =
L1 0 ]
such that _ -
a1 o 1
-1

15



which is not a non-negative matrix. The solution corresponding to A
sets Vg =Pz, V| = (1-p)z, s = 0, and all other v, = 0. We will show
that Theorem 1 can be applied to this problem with p < 1 and thereby
demonstrate that the theorem's range of application is wider than the
* :

class of matrices of Leontief type. To do this it is only necessary to
verify that the assumptions 1-4 hold. Take (fi - ana Bi -

2 .
{(y:y € E-, v, > yg] for i =1,...,N.

It is easily verified that the sequence < Ci’ 6i>¥ is a sedquence

of stable sets of <A,;>) and that the <R >N is such that each R,
is the non-negative orthant of EN. Thus, assumptions 1 and 2 hold

trivially, and assumptions 3 and 4 hold as long as x > 0 and Ti(°)°)
is a non-negative operator.

Another method of circumventing the conclusion of the all-or-none
theorem is to impose a non-linear rather than a linear utility function
of dividend payment. This approach will be formulated and discussed in

Chapter III.

3. Stochastic Problems

In this section we will show that Theorem 1 can be extended to cover
the stochastic problem (1.2) under appropriate additional assumptions.
Iet fN(x) represent the expected return following an optimal policy

from state x with N periods remaining. Again following Bellman [4]

*
However, A. Veinott has pointed out that the problem can be transformed

into one with Leontief structure by subtracting the second constraint from

the first, and using the derived constraint along with the constraint

VO-S::pZa

16




we can derive the recurrence relations:

£u(x) = max  (ey(v) + £, Ty q e Ty (%, v )} N > 1,
vev N
N
fo(x) = O)
where 8 denotes the expectation operator. Note that the expectation

is taken only over the random vector Ty
Theorem 2. Suppose that conditions 1-4 of Theorem 1 hold for any

possible realization of the vector sequence <rn>§ . Then the conclusion

of Theorem 1 holds with the expectation of Tn(',°,°) (denoted Tn(','))

replacing Tn(',') in the evaluation of L and KN’ and the matrix

N
ﬁn of the optimal basis with n periods remailning is evaluated by
solving the linear program
max cn(v) +L,,° Tn(x,v) .
vev_(x)
n

Proof: The proof is identical to the one presented for Theorem 1

due to the fact that
8rN{LN-1" Ty(%v,ry)) = Ly ;o T (x,v)

by the linearity of L Also note that E;(-,-) is linear in x

N-l(°)'

and v since each realization was assumed to be a linear operator on

>l
1<l

X
Using Theorem 2 we can formulate a price-speculation model similar

to one studied by Arrow and Karlin [2] for the deterministic case. The

process can be described by a system with two-state variables, i.e.,

t t .t ’
X = (xl,x2) where xi represents the amount of cash on hand at time t

17



and x; represents the stock of commodity at time t measured in dol-
lars. At each time we may withdraw funds from the speculation in the
amount Vs sell an amount of stock vy, Or buy an amount of stock v3.
Suppose commissions are paid on buying and selling, and our objective 1s
to maximize the expected sum of discounted withdrawals from the system.
Furthermore, suppose the value of the stock retaired is subject to ap-
preciaticn or depreciation due to a change in price of the commodity,
and that this price change is of a random nature. The price change can
be represented by a random factor rt, where we ascsume that each factor

r, t=1,...,N, has distribution function P, such that Pt{rt< 0} =0

t

and the factors are independent from period to period. Translating this

description into our standard format, we have:

Vo (55) = (V)07 ¥as Vs Vi )s Vom B v b A V. V= X
t 17727737 4757 71 122 13'3 b 1
t
V2 + V5 =i XE, V_>_O}
vt
t ot ot b t t
Tt(x _,V » ) = t t s U_t('\f ) = (B ‘,OF,O’O,O) 5
r v
>
where a12 and al3 represent commissions; thus, a13 > 1 and 815 < 1.

It is easy to verify that the constraint matrix is of Leontief type
and the transformation Tt is non-negative. Thus, Theorem 2 can be ap-
plied and we solve the problem replacing r* by ;t, its expected value.
It is an interesting consequence of this result that the variance of the
price change plays no part in evaluating an optimal policy. Of course,
this result arises in part due to the lipearity of the utility for with-

drawals, and would not be true if the investor were risk-averse, i.e.,

possessed a strictly concave utility for withdrawals.

18




CHAPTER IIT

A GENERAL PROCESS WITH CONCAVE

UTILITY AND FINITE-STATE SPACE

1. A Decomposition Type Algorithm

In this chapter we shall relax the restriction of linearity imposed
on the objective functional and present an algorithm employing decomposi-
tion techniques to solve an interesting specific case of the general
control problem. The vehicle for our derivation will be a version of
the capital budgeting model studied in Chapter II. At that time it was
pointed out that the structure of the solution was such as to preclude
the necessity of both investing and distributing dividends in any one
period. To circumvent this unappealing character of the optimal policy
we introduced restrictions requiring a minimum percentage of available
capital to be disbursed at each time. Another approach to the problem
is to assume that the firm's marginal utility of withdrawals is strictly
decreasing with the amount withdrawn. In other words, each utility
function Ut(-) is strictly concave and increasing. Moreover, we will
eliminate the point input stream output character of the investment op-
portunity profile given by assumption Ak in Section 2.2.

In terms of the notation presented in Chapter I, the process to be
considered may be described as follows:

Let L be the left-shift operator described in Chapter II, i.e.,

19



then we want to maximize

N
T U (w,)
t."——vl t t
where
TSARIINE L Itvt t = 0,...,N-1
1
X = X
and
o ot t
Jt(x) = {vir w4+ vl e, v 20}

with 1 +the vector consisting of all ones with an appropriate dimension.

It is clear that in this formulation assumptions Al and A3 given
for the capital budgeting problem have been retained. assumption AL has
been dropped, and assumptions A2 ard A5 have been changed to

A¥: The firm e utility functicn during period t is Ut(') ,

a function of the amount of dividends paid out.
We shall assume that U&( ) is concave, strictly increasing, and
continuously differentiable for each t.

Tn 2 subsequen*t chapter we will iuvestigate asymptctic properties
of the scolution for a similar class of problems. However, since this
formulation of the capital budgeting model seems realistic it is desir-
able to have a relatively efficiert technique available to solve
numerically a specific finite horizon problem. For thls purpose we will
formulate the problem irn a way that emphasizes the structure suitable
for application of generalized programming techniques.

Following Baumol and Quandt {3}, for any given time hcrizon T we

may put the capital rationing problem in the form:
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T
max % Ut(wt)

t=1
subject to
; 8.4Vs + Wy < Mt t = 1,2, ,T
J
v, >0
J—
wt > 0
where

v, 1is the number of units of project J constructed

J
Mt is the exogenous cash input at time +t
_ajt is the net cash flow obtained from a unit of project

at time ¢
w is the amount of cash withdrawn at time t

Ut(-) is the utility of withdrawal at time t.

The assumption that Ut(-) is strictly increasing as a function of
withdrawals implies that the tth eguation will hold with equality.

It seems that this formulation includes many of the dynamic alloca-
tion problems such as those considered in Bellman [U4, Chap. 1]. Our

problem then is given by:

T
A: max tElUt(wt)
Av + Iw = M
v >0
w >0

A= (ajt)’ v = (VJ-)) v = (Wt)) M = (Mt) .
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A problem equivalent to A 1is

B: max w

- T
W= [(WO’wl’°°"wT): w, >0, 1 =1,...,T, and wy < t§lUt(wt)}"

The concavity of U, 1mplies that W 1is convex. To see this, choose

t

wl,w2 e W and let w" = b 4 (l—x)wg; then

T
A 1 2 1 ;2
Wy = AW+ (l—x)wo < t%l [xUt(wt) + (l-k)Ut(wt)]

T 0 5 T N
< T U Ow) + (1) = B U(w) s
t=1 t=1

thus wx € W; hence, W 1s convex. The equivalence of problems A and

B is clear:

T
If (x,w) 1is optimal for B, then vy = T Ut(wt)5 for if not,
Lt

Yo could be increased without destroying the feasibility of
(x,w), thereby contradicting the assumption of optimality.
Let W = (wl,...,wT); then if (x,w) is optimal for B,

(x,w) is feasible for A with the same value of the objective

function. Hence, we may conclude that

T
max t?l Uf(wt)zlmax W




T
If (v,w) is optimal for A, then (v,w) with Wy = = Ut(wt)
1

is feasible for B, again yielding the same value of the objec-
T

>max £ U (w,), proving the

= £l ttt

tive function. Thus, max vy

equivalence of problems A and B.

We now consider the problem:

K i
* max L WAN,
. 01
i=1
subject to
X ~i
Av + Z wA, =M
. i
i=1
K
N =1
i=1 *
W= (wé,ﬁi) € W for all i,A = (ki) >0, v>0.
K i
Since W 1s convex, any point of the form T w xi is an element of W.
1

This implies that any solution to * for a given number of vectors

w" € W is primal-feasible for B.

A feasible solution to * is

v =0
1 .
Moo= T i=1,2,...,T
. ™ if Jd =1
—1 L
W, =
J 0 0.
i

Thus, we can solve an initial master program * by the simplex method.

Following the usual generalized programming formulation, see Dantzig
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[6], we form a subprogram which tests solutions to * for dual feasibil-
ity in B. BSince each solution to * is primal-feasible for B, dual
feasibility of the solution implies that it is optimal for B and hence

for the original problem A.

Let L (;k, ;k,...,f# ) be the optimal dual variables at the
1’ 72 T+1
Kth stage of the master problem, where ;T+1 is the shadow price cor=-

responding to the Zki constraint. Let

T
Z=min [ £ w.r., - w.]
weW i=1 i 0

If 2> -,

71’ then the current optimal solution to * is dual-feasible

for B and thus optimal for B.
We thus have at each stage the subproblem:

Minimize

subject to

(w,) -w, >0 and w, >0, i=1,...,T.

t 0]

= ™M
(e

The Lagrangisn for this problem is:

T x T
F(W,IJ) = Z wt nt - wO = 1.1(2 Ut(wt) - WO)
t=1 1

Examining the single constraint equation for the subproblem, we
T
observe that % Ut(wt) - wO is a concave function of w = (wo,wl,---,WT)-

Also, by choosing w small enough we can find a point w for which the

0

restriction holds with strict inequality. Thus, the Kuhn-Tucker constraint
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qualification holds, and since the objective function is linear the Kuhn-
Tucker-Lagrange (KTL) conditions are both necessary and sufficient for
optimality.
- th
The KTL conditions for the K subproblem are:

M =1 since w is unrestricted in sign.

0
% 3 : : L 0
T > &—t- Ut(wt), t =1,...,T with equality holding if w_ > O.
T
? Ut(wt)= W, since u = 1.

From our assumption postulating the strictly decreasing marginal

utility of withdrawals we have

d )
2, > 2, =>3§Ut(zl) <5—Z;Ut(z2), t=1,2,...,T .

Thus, if

= > S U.(0), then w_ =0

"t-—&t AR g =
and if

=% )

“t<&4_tUt(O)’ then w, > 0.
Hence, for any +t,

=% d

wt>O(=> T[t<art-Ut(O) B

and otherwise L 0.

We now use the above results to solve the subproblem. We know that
=X . —k
T >0Vt and Vk since the g represent a sequence of money shadow

prices. Let L be the subset of the integers 1,...,T for which

-« 3
Of“t<5§Ut(o)’ t el .
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Then the KT conditions hold (=

ES— U ()
t

and

Since the KTL conditions are necessary and sufficient there will be

a unique w vector solving the Kth subproblem with

T
wo = U (w,)
0 i1 Tt
_k
W, = vt(nt), t el
w, =0 , t£L,

where v,_ 1s the inverse function of ° v_(w,) which exists since we
t Sat tt Tt

have assumed a strictly decreasing marginal utility of withdrawals. Thus

we have found a method to solve the subproblem at each stage by inspec-

tion. Inasmuch as the generalized programming procedure has been proven

to be convergent, we have developed an algorithm to solve problem B and

thus problem A.

2. Application to Capital Budgeting

The Baumol-Quandt formulation introduced in Section 1 is also useful
for investigating the structure of optimal policies. We will prove a
theorem for the capital budgeting version of the general control problem
with the quite general concave utility function postulated in Section 1

that is analogous to the all-or-none theorem of Manne's obtalned for a

linear utility function.
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Theorem 2.1. Suppose an optimal solution exists for the capital
budgeting problem stated in Section 1. Then there is an optimal solution
to that problem employing at most T of the available investment Proj-
ects where T is the number of decision periods. (The conditions imposed
on the functions Ut(-) are not required for this theorem.)

Proof: Consider problem B of the previous section, and recall that
any solution optimal for B is also optimal for A. Since we assume the
existence of an optimal solution to A, one also exists for B by the

equivalence established for the problems. Let

E 3
1
m
=

be the w-component of an optimal solution to problem B. Iet

Y1
- Vo
A\ .
Y
and consider the system
1) AV =M-w

Since w 1is derived from an optimal solution to problem B, there exists

some non-negative vector v such that

A\;:M-W, V’EO.

But this means that we can find some basic feasible solution v* to

system 1 by applylng the phase I procedure of the simplex method.
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Inasmuch as system 1 has T equations, any basic feasible solution will
have at most T non-zero components. Thus, < v¥, v > is an optimal
solution to problem A, using at most T of the available investment
projects. Q.E.D.
Examining this result with respect to the one obtained by Manne for
the case of & linear utility function, we observe that by introducing
the non-linear utility function we can no longer say that both invest-
ment and withdrawal need not occur simultanreocusly. However, we have
established the result that there is an optimal solution such that if
more than one project is initiated in any one period, there must be a
corresponding period or periods during which no project is undertaken.
This result is similar to the one that would be obtained by the alter-
native method described in Chapter IT of requiring a fixed proportion of
the available capital to be disbursed. It is also interesting to observe
that Manne's all-or-none result depended upon the point input stream
output character of the investment opportunity profile, while Theorem 2.1

does not require any such assumption and thus holds for the more general

Baumol-Quandt model.
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CHAPTER IV

A CLASS OF PROBLEMS WITH LINEAR UTILITY

FUNCTIONALS AND INFINITE HORIZONS

1. Extension of the Linearity Theorem

The substance of this chapter will be an investigation of the control
problem studied in Section 1 of Chapter II, with the time horizon assumed
to be infinite. The linearity theorem obtained for the finite horizon
case will be extended to cover the infinite horizon case. The notation
for the state variables, control variables, and transformations remains
as described in Chapter I. The return or utility function will be linear
as in Chapter II. It is interesting to note that the problem we pose is
a programming problem with an infinite number of control variables since
an infinite number of decisions must be made, and an infinite-dimensional
state variable since we may assume that x € 4°. The infinite character
of the problem notwithstanding, we are still able to arrive at a computa-
tional algorithm. Of course, the assumptions imposed on the relation-
ship of the constraint set to the state transformations are rather severe.
In the next chapter we will investigate the results obtainable when these
assumptions and the objective linearity assumptions are relaxed.

In discussing the infinite-horizon model we will assume stationarity
of all transformations and look at the sum of discounted returns. Thus,

the functional equation for the process becomes

(4.1) f(x) = max {c(v) + Bf o T(x,v)}
veV(x)
where
V(x) = (v:Av = Dx + B, v > O}.
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We shall meke the basic assumption that V(x) is compact for each
x € R and that (C,B) is stable for A. Recall that R =

(x:(Dx + B) € @}. Define the sequence < fN(x) >;—l for x € B by:

(k.2) £y(x) = ngcx){c(v) + Bfg_y © T(x,v)]

Under the assumptions of Theorem 2.1, which in this case reduce to
H1) 1. ceC
2. [C+Ln-1° ™] ¢ n=1,2,3..
3. xe R

L. T(x,v) ¢ R for all x e¢ K and v e V(x) ,

we obtain as before

fN(x) = LN(X) + Ky ¥V xe I2
where
N N-n
LN(X) = & B E o G .0 ° GN(X)
n=1
E =coAlo D
n n
" -1 '
G =T"o A o D+ T
n n
and
' N N-n 1
_ - " e
KN = n%l B [c + BLn_l o T"] o An B

Let us now assume that we are dealing with a "productive" system, i.e.,

that with N+1 periods to go we can always do as well as we could with

N periods to go. Clearly sufficient conditions for this assumption to

hold are either ¢ > O or the "do nothing" solution (slack) is feasible.
Under this assumption < fN(x) > will be an increasing function of

N for each X € 72 . In case B = 0 this assures us that < LN(X) >
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is increasing in N for each x € T2 and even if B # O it is likely
that this result still holds.

In any case we make the assumption:

H2) < LN(X) > 1s an increasing sequence for each x ¢ R ,
and < KN > 1is an increasing sequence of real numbers. We now wish to
show that < LN(x) > 1is a convergent sequence for each x € & .

Since the total number of bases that can be chosen from the matrix

A is finite, the number of different operators Gn in the sequence

<a > is also finite. Thus, we may write:
n n=1
G|l = max HGnH and ||B]| = max HEnH
1<n<e 1<n<e

where the norm (||*||) of a linear operator is defined in the usual way.

Thus,
N
ILN(X)I < ?lBN_n|En_° Goyp© - GN(x)l
al N-n
= Ifle i8] R i P
<ell £ R e
n=1
N-1
< el x|l % (BHGH)H for x € R .

If we now make the assumption:

H3) Blicll < |
we have

Lol < sl Ixl/Gslel)  for x e R,
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and since the right-hand side is independent of N the sequence
< LN(x) > is bounded above for each x ¢ K, and thus due to H2

approaches a limit, say L(x)

Lemma 4.1. If a sequence of linear functionals < LN(X) > ap-
proaches a limit at each point of a closed set ?2 . then the sequence
converges at each point of the smallest closed linear subspace, S,

containing EZ .

Proof's
P
S = {y:y= ¥ a.x, with x, ¢ [ for i =1,...,P}.
. ivi i
i=1
Thus, for y € S,
P
L(y) =L (Ta.x ) with x e R for each i
n nt, i
P P
= & aiLn(Xi) —9.2 aiL(xi)
l:;l l-_:l
and thus
P P
lim Ln(y) = I aiL(Xi) where y € § and y = Ta. X
n-—oo® i=1 1

with x, € K o, i=1,...,P.

Q.E.D.

Since S 1s a closed linear subspace of the Banach Space X, S 1is

also a Banach space, and

Ln € (ﬁ(S,El) for n =1,2,...

Furthermore, we have shown by the Lemma that 1lim Ln(x) exists
n-—

for all x ¢ S. Thus, defining

L(x) = lim L (x)
noe U
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we have satisfied the conditions of the Banach-Steinhaus Theorem [8] and
may conclude that L € Aﬁ(S,El), and also that for some C, HLnH <C
for all n.

We now turn our attention to the sequence of constant terms < KN >,

again assuming that it is an increasing sequence (H2). To show that

< KN > 1s bounded, we employ the same argument as before to write

AT = mex IAZH
1<n<e
and -
k. | < g ¥-1tlc o a71p| L o AT1B|
Ky —nle p BLF BIL e ° Ay

[ AN

Liel + sl 1A 2l (=)

and thus the seguence < KN > 1is convergent and we may write

K= 1lim X .
n
n— o

It is now possible to state the main theorem.

Theorem 4.1: Existence and Characterization of Solutions.

Under assumptions Hl, H2, and H3 the sequence of return func-
tions < fN(x) converges monotonically to a function f(x) for all
X € S, where
f(x) = L(x) + K
and

1
L e £(s,E)
Furthermore, f satisfies the required functional equation, i.e.,

f(x) = max {c(v) + Bf o T(x,v)} for all xe R
veV(x)
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Proof: It remains necessary only to prove the last statement. The

proof uses a monotonicity argument adapted from Bellman [1]. Let
P(£,v,x) = o(v) + Bf o T(x,v)
and let M dencte the maximum operator over V(x) . Then
fN(x) = MP(fN_l,V,x)
from (4.2), and by mornotonicity, for a fixed x € K, we have
f(x) > MP(fN-l’V’X)
> P(fN_l,V,x) for all v € V(x)

Since this inequality holds for every N, letting N -« yields

£(x) > P(£,v,x) for all v e V(x),

and thus
f(x) > sup P(f,v,x)
veV(x)
Similarly,
fN(x) < sup P(f,v,x) for every N
veV(x)
and thus
f(x) < sup P(f,v,x) ,
veV(x)
yielding
f(x) = sup P(f,v,x) .
veV(x)

Since f 1is continucus from our previous result, the compactness of

V(x) allows us to conclude that

f(x) = MP(f,v,x) for all x € R
Q.E.D.
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In order to make use of the previous theorem we should like to know
that the solution to 4.1 is unique. Let us consider the control problem
with B =0, i.e., V(x) = {(ViAv = Dx, v > 0}. If the other transforma-
tions remain unchanged it can easily be seen that all of the previous

results hold except that K 0, N=1,2,..., . Thus, it is clear that

N=
the limit function f£(-) is an element of J&(S,El) and satisfies the

functional equation

f(x) = max P(f,v) for fixed x e k.
veV(x)

Theorem 4.2: Uniqueness Theorem.

let F ¢ o&(s,El) such that
F(x) = max P(F,v) for all x e R
veV(x)

Then F(x) = f(x) for all x € S.

Proof: Choose any x € R . Since ﬁ(x) is compact, there exist
points y and w in V(x) such that f(x) = P(f,y) and F(x) =

P(F,w). Then by the usual argument we obtain

|£(x) - F(x)| < max (|P(£,y) - B(F,y)|, |P(£,w) - B(F,u)|}
< B max (|(£-F) o T(x,y)|, |(£-F) o T(x,w)|}.

Since both f and F are linear, we have

vy =it and w=2ilp.
y '

Thus, letting

G =T +T"0 A 6 D and G =T + T o ATe D
Y Yy W W

yields
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| f(x) - F(x)| < 8 max { [(£-F) o Gy(x)l, |(£-F) o Gw(x)l}

From H3 we know that B“G“ = k <1, where the norm is considered as
defined on S. Iet us now examine the subspace § = {z:z = Ax, A 1in the
scalar field} . Clearly, §C. 5 and thus we may restrict our operators

to § and consider norms on § denoted by H'H). Then

Blle lle < Blloll < Bl = x <1 for 5= y,w,
and

BI(E-F) o 6,0 < KIE-Fllllxll for 5 = y,u .

Therefore,

1£(x) - P(x)| <k |lE-Fll =l -

However, since S 1s a one-dimensional subspace, it is alsc true that

[£(x) - F(x)]

I£-Fll =l
yielding the conclusion

|£(x).- F(x)]|

O since k < 1.

Inasmich as x was an arbitrary point in 73 we have shown that

f(x) = F(x) for all x e B .

P
Since y e s =>y =S a,x, for X e K , it follows that
1

f(x) = F(x) for all x e S.
Q.E.D.

Corollary 4.1. The function f(x) = L(x) + K obtained as the limit

of the N-period return functions is the unique affine functional on §

satisfying equation 4.1 whenever x ¢ "R
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Proof: The existence theorem shows that f£(.) does satisfy equation
4.1, and the unigueness theorem proves that IL(.) 1is unique. It remains
to show that K 1s unique.

Suppose the contrary; i.e., for some x ¢ R

L(x) + K, = MP(L,v) + BK,
and
L(x) + K, = MP(L,v) + BK., -
Subtracting:
[Kl- K2| = BIK,- K2| and thus K, = X,

It is now possible to use the unigueness and existence theorems to
state an algorithm for the determination of an optimum infinite-horizon
policy and the optimal return function.

Choose x € B (x # 0). Our first concern will be to find the

unique return function f(x) satisfying 4.1.

2. A Computational Algorithm

Algorithm for the Determination of f. From 4.1 we have

L(x) + K = MP(L,v) + BK .

Suppose we knew that A* was a dual feasible basis for the programming
problem MP(L,v) (note that we do not as yet know L); then since
x e R implies the optimal basis is independent of x, an optimal

policy could be expressed as

~-1

v, = B0 D(x) + A;'lB .
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This result yields the functional equation

-1

L(x) + K = [c* f\.;lc' BLe T' + BLe T"o A "o DI(x)

- 1 A-l
+coA’BarpLo TV AR,

and thus the functional 1L must satisfy
L{I - BG,)(x) = E,(x) for x €8

where, corresponding to the previous notatlon,
G, =T +T"o A7 D and E = co ite
x = + o % [«] I3 x = H % A

Now assumption H3 shows that BHG*H < I and therefore l/B > HG*”, and

hence is greater than the spectral radius of the operator G Therefore,

x°

I - BG, is invertible, and

-1
L=E,o [I - BG,]

Similarly,

< T-8) [co A;lB + BLo T"e A;lB] s

and it is clear that a solution to the infinite horizon problem would be
achieved if we knew an optimal basis A*. In order to calculate an op-
timal basis we observe that the M x P matrix A has only a finite number
K of possible bases, [Al,AE,...,AK], where K < (ﬁ) , and proceed as

follows:

1) Examine Al for primal feasibility; i.e.,

-1

A

o D(x) + KilB >0 for some x e [

If Al is primal-feasible, proceed to step 2; otherwise repeat step 1

with AE' Since by assumption the optimal basis is independent of the
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right-hand side for all X € A , we eventually will reach step 2 with
a primal-feasible basis A&,.

2) Compute Ly corresponding to the basis Aj where

-1

Note that the inversion operation may be difficult due to the
possibly infinite character of the transformations involved.

3) Compute the dual variables Hj corresponding to Aj where

A=l -1
\ 1, = 7R+ BLJ. T ﬁlj s
and 7j includes those components of C corresponding to Aj, and
similarly for T" as indicated previously.
4) Check the solution for dual feasibility; i.e., if ay is any
column of A not included in A, then dual feasibility has been

achieved 1if and only if

n, - oa; > (c + BL<j T )i

where the component (c + BLJ T"), corresponds to the activity represented

i
by ai. If this test fails, repeat step one with Aj+l' Since an optimal
solution to the problem exists by the existence theorem, this test must
ultimately be satisfied yielding an optimal basis ﬁ* in a finite number
of iterations. However, the finiteness of the computational process does
depend on the feasibility of the inversion operation described in step 2.
The uniquenéss theorem guarantees that the return function calculated
in this manner will be the pointwise limit on S of the sequence of N-
period return functions. It should be noted that neither A, nor the

associated optimal policy v need be unique, but the return function £

*

is unique on 8. Q.E.D.
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3. The Structure of the Solution

It 1s interesting to analyze the results obtained so far from the
viewpoint of the following three guestions posed by Bellman [5]:
1. When does it make sense to consider an infinite-horizon model?
2. When it does, are the optimal trajectories in state space and
the optimal policies limits of the corresponding quantities for the finite-
horizon problem ag the horizon beccmes large?
3. What is the effect of using steady-state optimal pcliciess for

a finite~horizon prcblem?

The first question has clearly been answered, the pertinent suf-
ficlent condition being H3, i.e., BlG < |. This condition gives the
process the reguired contraction characteristic that allows an infinite-
stage generalization.

Attention will now be turned to points 2 and 3 to galn some insight
into the effect of using the easily calculated infinite-horizon policies
to approximate optimal policies for the finite-horizon problem.

If we fix x € . and define

F (v) = c(v) + Bf o T(x,v)

and

F(v) = c(v) + Bf o T(x,r) for all v € v(x),

then, under the hypothesis of the existence theorem, both Fn and F can
be expressed as continuous linear functionals of v plus & term indepen-

dent of wv; and furthermore,

F (v) »F(v) for all v e v(x) -
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The desired results on policy convergence will be deduced from the
following theorem.

A policy v© will be called € -optimal for F, if Fn(vn) >
Fn(v) -€ for all v e V(x). A policy v~ will be called optimal for

, n
F_if Fn(v ) > Fn(v) for all v e V(x).

Theorem 4.3: Policy Convergence

If V(x) is compact for each X, Fn(v) - F(v) for v e V(x),
and each Fn and F can be expressed as a continuous linear function cf
v plus a term not dependent on v, then:

l. Given 6 >0, 3 N>y ¥n >N, v*¥ optimal for F implies that
v*¥ 1is¢-optimal for F_ .
2. Let v* be a basic policy. Then -3 N>0 9 if for some

n >N, v*¥ is optimal for Fn’ then v*¥ 1is optimal for F.

Proof: The proof depends on the observation that at each stage,

and also in the infinite horizon, the problem

max Fi(v)
v e V(x)

is a linear programming problem. Thus, if wv* 1is optimal for F, there
exists a basic policy Vv such that F(v*) = F(¥). There are only a

finite number of basic policies (vl,vz,.,.,vK)

1) By hypothesis, F(v*) >F(v)¥v € V(x) . Since there are a
finite number of basic policies, given Q >0, 3 N05 va > Ny
IFn(vi) - F(vi)l <€/2 where i =1,...,K, K+,

indexes the basic policies for i = 1,...,K and vk+l = v¥% .
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let Vk be a basic policy optimal for Fn. Then

F (v) - F(v¥) <F(v) + € - F(v¥) ;

but F(v, ) - F(v*) < 0O, and therefore

Fn('vk) - F(v¥) < €
Since

Fr;(vk) > Fn(‘f)J Vv o€ V(X);

F(v) - F (v¥) <€ , vveV(x),

I

and v¥ 1isg é-optimal for Fpu

g) Suppose v* 1s not optimal for F, and that v¥*¥ 1s basic.

Then 3 a basic policy Vi such that

F(Vk) > F(v¥) , or for some 8 >0,

F(v,) = F(v¥) + &

k)

Now choose N such that ¥n >N,

|F(Vi) - Fn(vi)\ < §/2 for every basic polic.

Thus, for any »n >N,

Fn(vk) + 8/2 >F(v*) + 8

> Fr(v*) - 8/2 + 8,
L

and therefore

Fl’l(vk) > Fn(v*) )
implying that there is nc n > N for which v¥* is optimal for Fn'

The desired result follows by contraposition.
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Corollary 4.2. If v* 1is the unique basic policy which is optimal

for F, then 3 N3 ¥n >N, v¥ 1s the unique basic policy optimal
for F_.
n
Proof: Follows directly from_g) and the fact that for any n there

exists a basic optimal policy.

We can now relate these results to the original problem by the
following statements:

1. If the pclicy v* corresponds to the optimal basis obtained
in step 4 of the algorithm, then given € > O, for N 1large enough,
v¥ 1is é—optimal for the policy decision with N periods to go. In
other words,

c(v*) + BfN-l o T(x,v¥) + € > max ({c(v) + BfN_l o T(x,v))

veV(x)

2. If there is only one basis, A, that satisfies the tests in

steps 1 and 4 of the computation algorithm, then there exists a horizon

-1

~ a“ -l
N such that for all greater horizons the policy Vv = A "o Dx + A °B

is the unique basic optimal first-period decision; i.e.,
fN(X) = c(V) + BfN-i o T(x,V) ,

and if v 1is a different basic policy,

fN(x) > c(v) + Bfy 1 ° T(x,v) for all x e I

Since the form of an optimal infinite horizon policy has been determined
for the infinite horizon case, it seems reasonable to investigate the
asymptotic properties of the state vector when an optimal infinite

horizon policy is followed for a number of periods. Suppose that the
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optimal basis A, 1is unique, and that starting from the state Xq

the sequence < X >§—O represents the successive states visited by a

trajectory employing at each state the optimal basis A Using nota-

x*
tion consistent with that presented previously, we have
-1

X 1 = (T”O A*

t
Tt 0D+T)Xn

or

X = (T" o A;l o D+ T')NXO .

Thus, the asymptotic question can be answered by determining when the

«©
sequence of linear operators, < GN>

No1’ Cconverges.
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CHAPTER V
ASYMPTOTIC PROPERTIES OF

A MODEL OF ECONOMIC GROWTH

1. Optimality Conditions

In this chapter we investigate the control problem formulated in
Chapter I, with the restriction that the state gpace X be a finite-
dimensional Euclidean space. We first derive conditions which an optimal
policy must satisfy, analogous to the Pontryagin conditions [17] for
continuous time. These conditions are then applied to specific formula-
tions of the general problem to obtain results about the structure and
asymptotic properties of optimal policies and trajectories.

Assume the original state space X 1s a subset of B and, as is
usual in this type of investigation, add a component xz to the state

vector xt representing the total utility accumulated through time <.

. *
Then the problem to be solved may be stated as follows:
Find a trajectory (xo,x) =< (xg,xt) >§fi and a control sequence
t T . -
v=<v > which maximize
t=1
T+1
X
o
subject to
t+1
1. x*t ST)CxtJngvt , t=1,...,T,
t+l
xo+ < x +Ut(vt) , t=1,...,T.
t t t
2. Atv <x ,v >0 5 t=1,...,T.

This derivation of a discrete maximum principle was suggested in

private communication by Professor A. Veinott.
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X~ 1is a given point in state space.

We shall assume that each utility function Ut(-) has the properties
required to insure the necessary and sufficient characteristics of the

Kuhn-Tucker (KT) theorem for this problem. Applying KT, the following

t) ST o ve

.. T
conditions are both necessary and sufficlent for < (xo,x o1

T

an optimal trajectory, and < vt >t—l

to be an optimal control seguence:

. . t 1 T
a) There exist m+l-dimensional multipliers < (WO,W ) >t:1 and
t

T . t t
m-dimensional multipliers < p >JC_~l with p >0 and WO = 1 for all

c) Primal conditions 1l, 2, and 3 hold.
S t ,
a) v Uf(v)+\lft T,’E;—ptAtSO, t o= 1,...,T,

with equality in the ith equation of group t 1if v: > 0.

t t

e) pt(Atv 'Xt) =0, p >0, t=1,...,T.

These conditiong will be applied to a particular formulation of an
economic growth model which will now be described. The model to be
considered will be stationary over time in the sense that all time sub-
scripts on the transformations will be eliminated and the time subscript
on the utility function will be replaced by a sum-of-discounted-utility
criterion. Transitions will be assumed to be independent of the current
state of the system, i.e., T' 1s the null operator, and utility will be
derived sclely by withdrawals of goods from the system. Dencting these
withdrawals vy a sequence of m-dimensional vectors < wt T , we state

>T; =]
the problem as follows:
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Primal Conditions

1. xt+l < T"vt

5 -1, t
< g gtluw®), t=1,..T
O -
i=1
t t
2. Av +w <x ,v >0,w >0, t =1, 5T
1 1

Adjoint Conditions

| -1 t t

| a) 'V u(w®) <»p’, t=1,...,T
\
|

. . t
with equality holding in the ith equation if Wy > 0.
b) T <pTA, = 1,...,T-1
. . . . . th . . t
with equality holding in the 1 equation of group t . if. vy > 0.

c) pt > 0, t=1,...,T.

Relationships a, b, and ¢ are easily obtained from the KT conditions,
previously stated for the more general problem, upon noting that T% =0
implies wt’l = pt. We will make the usual assumption that A and T

are non-negative, and that the utility function is concave, non-decreasing,
and continuously differentiable as a function of the consumption vectors
wt. Under these assumptions it is clear that we may replace the inequal-
ities in condition 1 and the first group of condition 2 by equalities
since an increase in the corresponding consumption activity can be used

without penalty to represent disposal of a given commodity. The model

will be called a production-consumption model since we have explicitly

separated a sequence of utlility-deriving consumptions < L >§—l and a
sequence of production decisions < vt >$_l that provide goods for

future periods.
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5. Existence and Convergence of Optimal Policies for Processes of

Long Duration

At this point we shall examine conditions that are sufficient to
insure the existence of cptimal policies i1f the time horizon 1is consid-~
ered to be infinite. The main purpose of this investigation is to show
the naturalness of certain conditions that we must place on the Lrans-
formation of the finite rorizon provlem in order to derive the desired
agymptotic preopertizg. The method used ir proving the existence of op-
timal pelicies is aderted from Karliz {13]. Employing the notatlion
developed previously, we desume thst all trapsformations are statiorary
over time and that we wish to maximize the discounted sum of utilities
received at each decision stags of the process. The problem is stated as:

Froblem 5.1,

Vo€ V(xt)

Xt+l S T(Xt}\l't)’ t B 1,2 3,. a

~

.
A4 . - .
X fixed and x ¢ X

We make the basic assumption that V(x) is compact for all x e X. For
the moment we shall assume that the utility function U(+) 1is cencave
and homogeneous of degree @, with a < 1. In other words, U(kv) =
kaﬁ(v). Tt is clear that it U{-) 1s a linear functional on V, then
Q = 1. The spaces X and V are subsets of finite-dimensiopal

Fuclidean spaces of m and p dimensions, respectively. Consider a

. . . B S t C ot
soquence ot feasible decisions v o < v RO where each v € V{(x )
S ’
. . t ®
for  sequence of shates ¥ = < X2 0 satisfying the above constraints.




Let R(xt) be the set of states reachable from the state X' in one

step. Symbolically,

t

R(xt) = {x:x < T(xt,vt), v € V(xt)}.

Since V(xt) is ccmpact, and T(-,*) 1is a bounded operator on X x V,
the set of states R(xt) will be compact, and by the Tychonoff theorem
. 3 -t c t-1 . . 1
the product space V(x~) X R(x ) will also be compact. Since x 1is

t
fixed, we may represgent a policy by the sequence s = < vt,x >t~1 5

1

o
where s € § = < V(xl) X ¥ > x < V(x7) x R(xl) > x < V(x3) X R(x2) >. ..

Again employing the Tychonoff theorem we see that the product space S
t t .

is compact. For any given feasible policy s = < v ,x >t~l the total

yield for a given initial state xl may be represented as
1 S ot-l ot
¢(X )S) = X B U(V ) b/
t=1
and our problem is to maximize ¢(Xl,s) for all s € S. Since S is
compact, the maximum will exist if ¢(xl,s) is continuous in s for

each xl € X. This will be the case provided

K .
1) B(x's) = 250 u(v)
t=1

converges uniformly in S for each xl e X.

In order to establish conditions yielding uniform convergence in 1)
we make use of work done to investigate the structure of von Neumann type
growth models. To do this we shall assume that the transition operator
T(+,+) 1is non-negative. The development uses some of the results
Obtained by Winter [23]. Following Karlin [12] and Winter [23] we define

the coefficient of expansion of a pair (x,y) as

1]
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AMx,y) = max [cly > cx]
yeR(x)

Using the above scheme it is now possible to state
Theorem 2.1.
(A) There exist M-dimensional semipositive vectors X and D,
and a positive scalar po such that

1) p_ % € R(X)
2) p_>N(x,y) for sll pairs (x,y) such that y e R(x).
3) pry< PP, x for all pairs (x,y) such that y € R(x)-.

(B) If p_ >> 0, then there exists a constant k such that

for any feasible sequence of states < xt >:—l’

1% < o%klixt|] for all t = 1,2,.
and for any p > po, where k does not depend on p.

(c) 1f Bpg <1, and p, >> 0, then ¢K(xl,s) converges
uniformly in S for each xl € X, and there exists an optimal policy

for problem 5.1. Furthermore, if we let

£(x) = max @(x,s) ,
s €8

then f(-) is a continuous concave function on X and satisfies the
"Principle of Optimality,"

f(x) = max (U(v) + BE{T(x,v)]) -
veV(x)

Proof: Parts (A) and (B) follow from Theorems 1 and 2 of Winter
[23] upon verification thaet his conditions (Al)-(AL) are satisfied by
the model presented as Problem 5.1. Defining the cone T in 2m-

dimensional Euclidean space as
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T = {((x,y): x ¢ X, y € R(x)},

we see that T 1s a closed convex cone since X 1is a closed convex cone,
and v € V(x) =) av e V(ox) for all x € X, and « > 0. Thus, assump-
tion (Al) of Winters[23] holds and assumptions (A2), (A3), and (Alh) are
immediate. To prove part (C) we define the functions

M(x) = max U(v) and m(x) = min U(v)
veV(x) veV(s)

on the set W = {x: HXH < kalH, x € X}.

Since V(x) is compact for each x € W and U(:) is a concave
function on V, we have |[M(x)| <® and |m(x)| < ® for each x € W,
and thus M(x) 1is concave on W and m(x) is continuous on W. Let

M = max M(x) and M = min m(x)
XEW xeW
which exists finitely due to the compactness of W and the continuity
of m(-) and the concavity of M(-) on W. Using the fact from (B) that
thH < ptkHXlH for any p > p_, and the result that V(-) 4is scalar
homogeneous on X for non-negative scalars, we have

t t

vC e v(x®) @ L e v(E)
o o’
and
4
X 1
ol <kl

P

Thus, since U(+) 1is scalar homogenecus of degree Q ,

u(v") |

ot
(oM lu(Ep)|
p

(N Mx,  for t=1,2,...

IN
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where

M* = max [|ﬁ|,|M|] .

Using this result we obtain from equation 1,

K
| =" Ut < 3
t=]1 t=1

for x1 fixed in X. The uniformity of convergence can be established
by noting that Bpg <1 implies we can finda p > oy such that
Bpa < 1, causing the series on the right to coaverge, and thus yilelding
uniform coavergence in 1. Hernce, ¢(x,s) is continuous for each x on
the compact set S, the optimal return function

f(x) = max @(x,s)

SE€S

exists finitely and the existence of an optimal policy is established.
The fact thet £(-) satisfies the Principle of Optimality was demonstrated
in Karlin [13]. Q.E.D.

Although the proof of the theorem above depended on the scalar
homogereity of the utility function U(:), it is clear *that the same
proof would suffice for a concave utility function dominated by some scalar
homogenieous function of the required type. In particular, a simpler ver-
sion of the proof could be constructed for bounded utilities.

An additional consequence of the uniform convergence demonstrated
above is that fn(x) - f(x) for each x € X where fn(') is the optimal
return function with n decision stages remaining. Using this result,
it can be shown that f£(-) 1s concave since each fn(-) is concave.

Defining vn(x) as an optimal decision with n stages remaining, and
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present resource position x and v(x) as the corfesponding quantity
for the infinite horizon problem, we should like to prove that vn(x)-a
v(x). Unfortunately, a uniqueness question arises here and the result
cannot be obtained in general. However, if U(-) 1is strictly concave,
the optimal decision at each stage is unique. Thus, for a strictly
concave utility function we can indeed show that vn(x) - v(x) for each
x € X, where v(x) is some optimal decision for the infinite horizon
problem. Moreover, it can be shown that each optimal decision function
Vn(°) is continuous on the state space. Since many interesting utility
functions will not be strictly concave in all of the decision variables,
we will need a convergence-tiype resﬁlt dealing with the case of U(')
concave. To accomplish this we need the following results describing
characteristics of optimal policies:

Lemma 2.1. Fix an initial point x € X. Let < v _(x) >
represent any sequence of cptimal first-step decisions with the number
of periods remaining indexed by n. Then "eventually'" every element
Vn(X) is "near" an optimal infinite horizon element v(x). More
specifically, if ;(X) is the set of optimal first-step decisions for
an infinite horizon program starting at point x € X, then for every
5 > 0 there is an integer N such that for all n > N, d(vn(x), v(x))
< B, where the distance function d(-,-) is the usual point to set

distance.

Proof: We first show that if < v >:—l is any sequence from a

compact set V, then ultimately each point vn must be near a cluster
point of the sequence. Let F be the set of cluster points of the

sequence < v, >:_l. Then we have to show that, given 8 > O,
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3 N>O0Z ¥n>N, d(vn,F) < 8. We know that F 1is not empty by the
Bolzano-Welerstrass theorem and we proceed by assuming the contrary
result; i.e., suppose EI 8 >0 2 ¥N >0, 3 n>N > d(vn,F) > 8. Cover

each point f of F Dby an open sphere 0. of radius ©/2, and let

f
0= U Of. Thenn V ~ O 1s closed and compact since V is compact,
fefF
also FMNV. 0= ¢o But by the construction and the contrary hypothesls,
o)
there are an infinite number of elements of the sequence < v >n—l in

the set V ~ O and, hence, by the Bolzano-Welerstrass theorem the
sequence must have a cluster point in V ~ O, providing a contradiction
and establishing the restult.

We show now that each cluster point ¢f any sequence of optimal

decisions < vn(x) >§nl is an optimal solution to the infinite horizon
problem; i.e., if F(x) 1is the set of cluster points of all optimsl
[o4)

sequences < vn(x) > s then F(x) C v(x). Again suppose the contrary
and let. ¥ ¢ F(x) be such that ¢ ¢ v(x). Thus, we can find a point

v¥ ¢ v(x) such that for some ¢ > O,
U(7) + BEIT(x,v)] + ¢ < U(v*) + BFIT(x.v*)]

Since fn(x).a f(x) for each x € X, we can find an integer N such

that for all n > N,

U(T) + BE{T(x, 7)1 + 5 < U(vx) + Br_[T(x,v*)]

©

> we can
n=1 ’

As ¥ 1is a cluster point of some optimal sequence < v (x)
ot

find a subsequence of cptimal policies < vn(x) > 1 converging to ¥,
. L=l
i

and since v # v*, 3 K >0 such that ¥V i >K, v (x) # v*. Thus,
Z n

4
using the continuity of U(:) and fn(-) we can find an n, such that




U(vni(x) + Bfni[T(x,vni(x))] + E < U(v*) + ani[T(X,v*)] ,

which means that vn‘(x) is not an optimal decision with n; periods
remaining. This est;blishes the contradiction and yields the desired
result.

Combining the two results, we see that for a given optimal
sequence < vn(x) >:=l’ given 5 >0, 4N>03 ¥ n >N, d(vn(x),F(x)) <
5 , and since F(x) C v(x), d(vn(x), T(x)) <5 . Q.E.D.

It should be noted that the integer N may be a function of the
rarticular sequence < Vn(X) >§=l that was chosen. We shall now state
a corollary to Lemma 2.1 which will extend the results of the lemma to
cover uniformly all sequences of optimal first-step decisions from a
given point. In other words, the integer N will not be a function of
the choice of a particular sequence but will apply to all possible

sequences.

Corollary 2.1. Let x ¢ X be the initial point of a program.

Then for every B > 0 there is an integer N such that for all n > N,

d(vn(x), v(x)) <8 for any optimal first-step decision vn(x).

Proof: Suppose the contrary. Then 3 Sl >0 2 ¥ integers N
3 ny > N and an optimal first-step decision with ny periods remaining

v (x), such that d(vn (x), v(x)) >5 But this means that we can
1 1

1
find a sequence < Vo (x) >§—l of optimal first-step decisions such that
3 =

d.(vn (x), v(x)) > Sl for all Jj = 1,2,3,...
J

'y s m
This sequence is clearly a subsequence of some sequence < vn(x) > 1
n=

of optimal first-step decisions, and it does not get near ;(x), thus

contradicting Lemma 2.1. Q-E.D.
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Corollary 2.2. If the first k components of every element

v € ;(x) are positive for a given x, then there is an integer N such
that for n >N the first k components of each optimal decision vector
vn(x) in every sequence of optimal first-period decisions with n periods
to go are positive.

Proof: The set v(x) is closed since if it were not, there would

i e 1 = 1
be a sequence < v > . such that each Vv ¢ v(x) and v - v¥, where

v* ¢ v(x). But v' € ¥(x) for each i implies that
£(x) = U(v') + Bf[T(x,vl)] for every 1
and thus, by the continuity of U(°) and f£(-),

£(x) = U(v¥) + BEIT(x,v*)] ,
which implies that v¥* ¢ v(x) .

Thus, we can find an open set O such that v(x) C 0, and each
element v ¢ O has its first X components positive. From Corollary
2.1 we know that eventuslly every element of < vn(x) >§:l is in O for
every sequence of optimal finite horizon decision vectors, and thus the
desired result holds. Q.E.D.

Let it(xﬁ be the set of elemente in state space that may be
attained following an optimal infinite horizon pclicy for t+ ©periods
starting in state x.. Let P ™e the set of components that are strictly

1

positive for all elements

ve U v{(x)
xext(xl)

Note that P may be empty. The next theorem to be proven will be
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useful when taken in conjunction with the results in the next section.

It should be emphasized that Corollary 2.2 refers to optimal first-period
decisions from a single initial point x, while Theorem 2.2 refers to
decisions taken after a certain number of time periods have elapsed. The
non-uniqueness of optimal policles implies that the state obtained at any
time following an optimal policy may not be unique, which 1s precisely the

reason for considering all states in the set it(xi).

Theorem 2.2. Suppose the decision process has proceeded ‘I‘l steps,

where T

1 is arbitrary. Then there is an integer T, such that if more

2

than Té stages remain in the process, every optimal decision vector has
positive components corresponding to those components which are in the
set P.

Proof: The set of states reachable in Tl steps from a given

initial state is bounded, and thus the closure of XT (xl) denoted by
- 1
xT lei is compact. From Corollary 2 we know that for each x ¢ ﬁTixl)
1 1

we can find an integer Ié(x) such that the result holds. The theorem

will be established if we can find an integer T2 such that

T2 %)
Tl 1
Using Corollary 2.1 we can find an integer N such that for all horizons
not less than N every optimal policy is near an optimal infinite horizon

policy for the first Tl steps. N depends on T and the nearness

1’ %2
required. GSince the state transition function is continuous in the

decision variable, this implies that, given & > 0, we can find an integer

N depending only on Tl and X such that, follcwing an optimal policy,
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the state vector at time Tl must be within a distance, 8, of the set
iTl(xl) if the time horizon is not less than N.

Define ;£(x) as the set of optimal first-step decisions for a
program with n stages remaining, starting at point x ¢ X. ILet x Dbe
an arbitrary point in the set QT (Xl)“ Then, for any number of remaining

1
stages n, given € > 0, a 8,> 0, such that x-yll < 5, implies the

existence of a decision vector v € ;£(x) such that d(v,;ﬁ(y)) < €
If this statement were not true, then we could find an n and an

£>0 such that ¥5 >0, Jy with [x-yll <& such that for all

v (y) ev (¥),

v (¥), ¥(x) < €

Thus, since vn(x) is the set of optimal decisions starting at x

with n stages remaining 3 Y > 0 such that
(v, (3)) + B2 (T(x,v_(¥)) < U(v) + BF (T(x,7)) - 7

for all v ¢ Gﬁ(x) s

where 7 does not depend on the particular element Vn(y) that was
chosen as long as d(vn(y), v(x)) > €. As £fo° T(-,-) 1is continuous

on the compact set QT (xl) x[V(x) W(y)], it is uniformly continuous
1

there. Thus, we can find a 62 > 0 such that for Hx—y“ < 82,

e, (20w (9)) - £ (v ()] < £

and

1£,2Ce,v)) = £ (Hy,v))ff < £ for all v e ¥ _(x).

But this means that
U(vn(y)) + Bfn(T(y,vn(y)) < u(v) + Bfn(T(y,v)) - %-for all v € ;g(x).
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Since the feasible set V(x) is a continuous set function of the state

vector x, given 7l> 0, ve can find a 83>‘O such that for all vy with

Nx-y)| < B,, v e V(x) = a(v,V(y)) < 7,- Thus, choosing ®, small enough

3 3

and using the continuity of U(-) and £° ?(+,-), we can find a

¥ € V(y) which yields

U(v_(¥)) + BI_(T(y,v,(2)) < U(F) + 87 (T(y,9)) - £ -

Consequently, vn(y) ¢ §£(y), contradicting the hypothesis. Thus, for

a given set of positive numbers (£(x)} we can cover the

xexX (x,)’
Tl 1

compact set XT (xls by a collection of open spheres centered at each
1
point x € XT (xl) and with radius 6l(x) such that:
1

1) There is an integer N such that for all time horizons not

less than N the state vector at time T denoted by XT , must satisfy

2
. 1

X € l ) N (x) if an optimal policy was followed for the first
T A 5 (x)
1 xex_ (x,) "1
T 1
1
T stages.
1 g

2) If ye Nﬁl(x)(x) for some x € le(xl), then for any

number n of stages remaining and for each vn(y) € ;h(y) we have
i(v_(3), 7.(x)) <E(x).

Applying the Heine-Borel theorem, we can choose a finite number,

k, of spheres from the collection that cover iT (Xl)’ have property 2)
1
and property l) with the union taken over these spheres alone. Suppcse

the covering spheres have centers 21,22,...,zk; then by Corollary 2

there are integers Nl,Ng,...,N

,, such that for n > Nj’ Vn(zj) has

positive components corresponding to those components in P with

J=1,2,...,k.
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Since the elements £ (x) of the set (£(x)} can be

xeX (%)
Tl 1

chosen small enough so that each vn(y) € ;h(y) has positive components
corresponding to P if Vh(x) has them, the result holds by choosing
T, = max (N,Nys 5N ] Q.E.D.

3. Asymptotic Analysis of the Production-Consumption Model

In this section we shall apply the conditions derived for a fairly
general formulation of the control problem to a specific problem dealing
with optimal paths of economic growth. Problems of this type have been
considered in the literature, beginning with von Neumann'‘s mcdel of an
expanding economy and progressing to the turnpike theorems of Dorfmar,
Samuelson, and Solow |10], Radner {18], McKenzie [15], ard Morishima [16].
For a more detailed historical description the reader is referred to
Chapter VI of the book by Morishima [16] and to the paper by McKenzie {15].

The present werk fits into the historical scheme of things in the
following way: After von Neumann [26] formulated his mcdel and estab-
lished the existerce of a maximal balanced growth path, the other authors
mentioned above showed that for certain formulations of the general growth
model efficilent paths of accumulation were near (in an appropriate sernse)
the maximal balanced growth patb (von Neumann ray) for most of the pro-
gramming period. The criterion for the "goodness" or desirability of a
feasible—stéte trajectory in these studies i1s the concept of efficient

production. A one-period production plan [xt,xt+l

1 t .
o t), x >0, and there is no y ¢ R(xt) such that

} 1is said to be ef-

ficient if x € R(x

t+1

T+l . . . , .
N # X and X <y (For a detailed description of general balanced
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growth models and characterizations of efficient production sets, see
Chapter 9 of the book by Karlin [12]). In the above models, consumption
of goods was not explicitly considered and consumers' preference func-
tions (utility) functions were not introduced. In this work we formulate
& model technologically similar to the one studied by Morishima [16]
except that we explicitly introduce consumption activities and our
criterion for the goodness of a program is the maximization of the
discounted sum of consumer-derived utility, rather than the concept of
efficient production. Recently Gale [25] considered a similar type of
model pioneered by Ramsey [19], which assumes a labor force growing at
an exogenously given rate. Instead of introducing a discount factor
they make use of an overtaking sequence criterion for optimality of a
brogram. The concepts pertinent to this investigation will be stated
more explicitly in the subsequent material.

Following Morishima [16, Ch. 6], we concern ourselves with an
economy consisting of m industries whose outputs are used as factors
of production during the next period. We assume that each industry can
be related to a single product (no joint production). We also assume
that there is a demand by consumers for the available goods at each stage
and that we wish to allocate goods between present consumption and
activities corresponding to industries which produce goods for the next
preriod. Let us define the possible activity set Ai available to in-
dustry 1 for production of commodity 1 as a set of non-negative

i i i i
a_.}, where a

. . i
m-dimensional column vectors, a = {alj’a2j’°"’ 3 K]

represents the amount of commodity k required to produce one unit of

commodity 1 if industry i chooses its jth activity. Let Cl
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represent the set of all possible matrices A of the form A =

[al,az,,..,am], with at a convex combination of the columns composing
Aj for i = 1,2,...,m. Several restrictive assumptions will be required
of the elements of Q . These will be glven as needed to proceed with

the development, the first bein

Al: The activity sets Ai are compact.

Define the real-valued function A(+) on (L , such that A e QL
=> MA) is the maximum positive eigenvalue of A. Since each A 1is
non-negative we know that there will be at least ore non-negative real

eigenvalue of maximum modulus.

Lemma 3.1. Under Assumption Al, the set Q. is compact and convex.
The function A(:) is continuous on (L and assumes its minimum on a .

Proof: Since each column of any A € @ is a convex combination
of .a given set of columns, it is clear that QL is a convex set. Let
}4(A) represent the convex hull of a set A. }‘(A) is compact 1f A
is compact, and (I = }{(Al) X 3{(A2) X ovo X }4(Am). Thus, (. can be
represented as a product of compact sets and is consequently compact by
the Tychonoff theorem (Royden [20]).

Since each A 1is non-negative, the maximum positive eigenvalue

N(A) 1is not less than the modulus of any other eigenvalue, and in
fact is equal to the spectral radius of A. Thus, for A € (L we have
AMA) = lim \lAnHl/n

n-—®

where

lall = sup |lax] ,
xH:l

the norm on the right-hand side being the usual Euclidean norm. Since

62




the norm is a continuous function on a-, M) 1is also continuous on QU
and therefore attains its minimum since Q is compact. Q.E.D.
Since the element of O. at which A *) assumes its minimum plays
a central role in the following development, it is useful to investigate
the properties of A(:) 1in more detail. For instance, one might hope
that in addition to A(:) being continuous it is also concave, thereby
assuring that the minimum is attained at an extreme point* of QL.
Unfortunately, simple examples with 2 x 2 diagonal matrices illustrate
that A(*) 1is not in general concave, nor does it generally assume its

minimum on P(Q). Although A(-) turns out to be convex for 2 X 2

a a
11 o) 0
diagonal matrices; matrices of the form ( 12) and ( ), with
0 0 b b
21 22
a12 and b21 large with respect to a1q and b22 serve to show that

convexity does not hold in general either. The following two lemmas

describe some results of a more positive nature.

Lemma 3.2. If A(-) has a unique minimum on Q , say A, eand
if AO is indecomposable, then there is a vector P, >> 0 such that
= <
x(AO)po p A, and X(Ao)pO << pA forall Ace QL such that no

column of A is & column of A . Furthermore, A € Pa).

Proof: The first part of the proof is similar tc one given by
Morishima [16, p. 160]. Choose for p, the left eigenvector of A_
corresponding to the root K(Ao). Since A is indecomposable,

p, >> 0 (Debreu and Herstein [24]). Suppose that the first

The set of points “P(Z) for any set 2z will be called extreme
points of Z. They are defined in the usual way; 1.e., z € P(2) <=>

Z =7z, + (1-7)z2 for 0 <7y <1 implies that either =z, £ 2 or

N £ 7.
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components of )\(Ao)pO are greater than or equal to the corresponding
components of pOA' for some A' € (L, none of whose columns are col-
umns of AO. Then, replacing the last m-j columns of A' by the
corresponding columns of Ao’ we have a non-negative matrix A" ¢ L
such that
x(AO)po >p A" .

But this implies (Karlin [12]) that x(Ao) is an upper bound to the
spectral radius of A", and thus K(AO) > N(A"), contradicting the
uniqueness of Ao'

Now suppose that A £ P(Q). Then there is a set of matrices
{A(i)];=l such that A(i) ¢ P(Q), and non-negative weights {7i}§:l
r

such that T 7y = 1, yielding
1

v
A =T, ALY
1
where at least one of the A(i) corresponding to a s >0 1s not

identical to AO. Then
r
MA )P, = P A = ? 7:P, A1) > MA e,
a contradiction. Q.E.D.

Lemma 3.3. Let A(+) have a unique minimum on F( Q) at A
l.e., A P(Q) and x(AO) < AA) for all A e F(w) and A # A
Assume that AO is indecomposable. Then there is a strictly positive
vector, p_, such that A(Ao)po = pA, end A(Ao)po << p A for all
A e P(Q), such that no column of A is a column of A - Furthermore,
A +) attains its minimum uniquely over the entire set U. and this
minimum is attained at AO; i.e., x(AO) < AMA) for all A e &

such that A # Ao'
6l




Proof: Observe that A € P(Q) if and only if the 1% column of
A is an element of 79(Ai) for each 1. For suppose that the e
column of A 1is not in TD(Ai) for some 1. Then we can find positive
welghts to attach to more than one element of Ai to form the ith column
of A. These same welights attached to the matrices formed frém A by
replacing the ith column by the appropriate elements of Ai’ and retain-
ing all the other columns, give a representation of A as a proper convex
combination of points of (L and thus A ﬁ’TD((l). If each column of A
is an element of ’7)(Ai) for the appropriate i, it is clear that
AeTP(A).

As demonstrated in Corollary 3.2 we can find P, >> 0 such that
%.(Ao)po = p A - To show that X(Ao)po << pA for all A« P(Q) such
that A # Ao, we use the proof given in Corollary 3.2, noting that if

A' ¢ P(Q), then A" € P(Q) by the observation just stated, and
thus the same contradiction serves to prove this result.

Now choose any A% ¢ (L such that A* # AO° Choose matrices

A(1) € "P(Q.) and non-negative weights 7, such that
A*¥ = Ty, A(L) .

This can be done since the compact set (:L is the convex hull of its
extreme points (Royden [20]). Then
% _ .
POA = % 75 %, A(L) > x(Ao)po

since Ao # A¥ implies that at least one A(i1) corresponding to a
7i > 0 has a column different from the corresponding columns of AO.

Thus, A(A*) > %.(AO).
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Let x* be the right eigenvector of A% corresponding to the root
N(A*¥). Then x* >0 since A¥ > O (Debreu [24]), and furthermore
there is some j for which strict inequality holds in the jth equation
above, and for which XE > 0. Note that strict inequality holds for all
equations corresponding to columns of A*¥ that are not identical to cor-
responding cclumns of Aod Thus, if no column of A* corresponds
identically to a column of Ao’ the assertion is true since x¥ > O.

Now suppose for some k that the last m-k columns of A* correspond
to the last m-~k columns of Ao’ and that the first %X doc nct where
1 <k <m. We will show that x; >0 for some 1 TDbetween one and Kk.

Suppose the contrary;: i.e., xf =0 for 1 <1 <k. Then
AA*)x¥ = A¥x¥* = AOX* )

which means that A(A*) 1is a root of AO corresponding to the eigen-
vector x*. However, AN(A*) # K(AO), since any eigenvectnr correspond-
ing to K(Ao) must be strictly positive (Debreu-Herstein |20G!). But
K(AO) is the spectral radiue of A, And thus A(ax) < K(AO), a
contradiction tc the result already proven that A(A*) > A(AO).

With the result that xg > G for some j corresponding to an

equation holding with strict inequality, it is easy to see that

x(A*)(pO,x*) = p_A¥xx > k(AO)(pO,x*) s
and thus A(A¥) > x(AO). This establishes the result that A(-) attains
its minimum uniquely on (. at the point A Q.E.D.
There is a simple consequence of Lemma 3.3 for the case of convex,
compact and polyhedral industry activity sets A,. In this case, each of

i

the sets /P(Ai) contain only a finite number of points, and thus (A )
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also contains only finitely many points. Therefore, one need only verify
that A(+) has a unique minimum over a finite set of points, and that
this minimum occurs at an indecomposable point, to conclude that ()
is uniquely minimized at that point over all of L . We now make the
assumption:

A2: A 1is the unique element of P(Q) minimizing A(-) on
TK QJ, and AO is indecomposable. We also assume that AO is primitive
(Debreu and Herstein [20]), although we do not need this until Lemma

3.8, Let

A = ANA ) = min A(A)
© °" AeR(a)

The relationship of ko’ P> and AO to the von Neumann balanced
growth path and prices will be demonstrated in the next lemma. To do
this, we first describe the following notation. Let the m-vector x
represent the state of the system.(xi is the amount of commodity 1
available) at the start of a given time period, and y the state of
the system at the start of the next time period. Let the m-vector w
represent withdrawals (consumption) of commodities, and the m-vector v
represent production levels of the industries. Recall that the produc-
tion technology may be any element A € (.. Then we have
* Av + w £ x

vy
with x, y, v, and w non-negative, and A € Q. Let T be the set
of all {x,y} which satisfy * for some v >0, w >0, and Ac Q.

Let AMx,y) = max {A]y > Ax )

Lemma 3.4. Under assumptions Al and A2 for the model described



above: there is a balanced growth rate, Py 8 balanced growth path [xo,yo},

and a von Neumann price -vector, Py such that

1) o, = 1/>\o

2) ¥, = P X, Py = Mx,¥,)

3) x, >>0, p, >0

b) Ay, =%, 8nd no other A Q. satisfies this eguation

5) P, > Mx,y) for all (x,y) €T with x>0

6) (p,,¥) < e (pysx) for all (x,y} €T

Before proving the lemma, several comments are in order. The
existence of a balanced growth rate Pys a non-negative balanced growth
path [xo,yo], and a non-negative price vector P, satisfying 2), 5),
and 6), is a consequence of Theorems 9.10.1 and 9.10.2 in Karlin [12],
as it is easy to see that his assumptions Tl - Th are valid for the model
being considered. We shall now show that under assumptions Al and A2
Lemma 3.3 gives a simple proof of Karlin's result, and indeed allows the
strengthening of the result given by 1), 3), and 4). It should be

observed, however, that this model is more restrictive than Karlin's.

Proof: Make the identifications

A
po = l/}\o
X é the right eigenvector of AO corresponding to xo
1 Q the left eigenvector of Ao corresponding to Ko
A
Yo = Po¥o

Since AO is indecomposable, it is clear that 1), 3), and the first part

of 2) hold. Since
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Mx sy ) = max U\lyo > Nx ),
it is clear that x(xo,yo) > p,- Suppose K(xo,yo) = p >p,. Then
o

y.o 2 PX > and thus P X, > px, since y_ = P Xy This contradiction

implies that 2) holds. Clearly,

Suppose Ay = x_ for some A € Q , A# Aj- Then x_ = Ay, = p_AX
or Ax_ = A X . But this means that A = A(A) since x, >> 0, which
contradicts the conclusion of Lemma 3.3 and proves 4). |

Now choose any {x,y} € J with x > 0. From * we have Ay < x
for some A ¢ (.. Suppose A(x,y) > 5 > p,+ Then on > 1 and
y > px. Thus, Ay > pAx, and phx < x, 5poAx < (p,,x) and, consequently,
6xo(po,x) < (po,x) since p A > AP by Lemma 3.3. But p_ >>0 and
x >0 1imply (po,x) > 0 and thus 5ko < 1, a contradiction. Thus,

5) holds, and p, 1s the maximum rate of balanced growth.

Observing that {x,y} € J implies Ay < x and thus p Ay < (po,x)
Lemma 3.3 applied as above yields xo(po,y) S.(po,x) or (po,y) <
po(po,x) for any {(x,y} € J , establishing 6). Q.E.D.

Lemma 3.4 implies that there is a unique element of (L called AO
which we shall call the von Neumann activity set. Corresponding to AO
is the maximal rate of balanced growth Py = l/k(AO), the strictly
positive von Neumann price vector P> and the strictly positive
balanced growth ray X,

In order to apply the adjoint conditions developed in Section 1 to
the capital model under consideration we shall have to assume that each
Ai has only a finite number of extreme points. To show that this assump-

tion is not overly restrictive we state a lemma:
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Lemma 3.5. Let X Ybe a compact convex set. Then, given £ > O,
there 1s a compact convex set KE with only finitely many extreme points

such that K.C K and for any k €K, d(k,KE) < ¢

Proof: Cover K Dy a set of spheres of radius £ centered at each
point kX of K. By the Heine-Borel theorem there are a finite number
of these spheres that serve as an open covering of K. Suppose there
are t of them, with centers at [ki}::l. Since K 1is compact and
convex it is spanned by its extreme points (Karlin {12], Lemma 13.2.4).

t
Thus, k., € K implies 3 {x, } £ and non-negative weights 7y, such
1 lf f=1 i

t
f
that £ 7, =1, x e P(x) for each f, and k. = T y, x . Now

£=1 f f i £=1 f f
t f

let K. be the closed convex hull of (U U {x, } }. Clearly, K
£ . i
i=1 f£=1 f
is compact, convex, has only a finite number of extreme points, and
KaCZ K. By construction for each k € K, 3 ki € K& such that
d(k,ki) < € since each of the original ki are convex combinations of

extreme points of KE and thus included in KE . Q.E.D.

We now make another assumption concerning the technology.

A3: FEach industry's activity possibility set Ai’ i=121,...,m, 1is
approximated by convex combinations of a finite number of activities
drawn from Ai’ including the activities that make up the matrix AO.
let Ki be the matrix whose columns consist of the finite set of

activities drawn from Ai.

In examining assumption A3 we note that if any Ai is a polyhedral
convex set, no approximation would be required since such a set may be

expressed as a convex combination of a finite number of points. ITf Ai
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is a general compact, convex set, then Lemma 3.5 may be invoked to
demonstrate that Ai can be closely approximated by convex combinations
of a finite number of points. Let 0. represent the set of matrices
from (L obtainable by approximating the Ai by the Ki for 1 = 1,2,

. ,m.

Ak: The utility function U(:) is a real-valued function defined
on Em, which is concave, non-decreasing, continuously differentiable,
and dominated by a scalar homogeneous function of degree (¢, where
s/x‘;‘ <1, 0<a<1l, aand p is the factor discounting future returns.

Before discussing optimalifty conditions for long-run programs we
must establish that an infinite horizon solution does indeed exist for
the model presented under assumptions Al-Ak. To do this we make use of
Theorem 2.1, proven in Section 2. It has been shown that the von
Neumann growth rate, Py in the hypothesis of Theorem 2.1 is equal to
l/)xO in the model under discussion. Consequently, there is, by A2 and
AL, a utility function which dominates U(°), which is scalar-homogeneous
of degree @, and B ol < 1. Part (C) of Theorem 2.1 assures us that
an optimal infinite horizon solution exists for the dominating utility.
Thus, the proof of the theorem for the utility function U(.) holds

because, for any feagible policy < v

o % tU( . a . S
& o1’ E B vt) is dominated

by a uniformly convergent sum. Therefore, an optimal infinite horizon
program will exist. However, referring to the discussion in Section 2,
neither the optimal infinite horizon solution nor the optimal solution
for any finite horizon program need be unique. It is clear that in this
model, U(-) cannot be strictly concave in all the decision variables

since it is a function of consumptions alone and not of allocation to
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production. It is for this reason that the policy convergence results
proven in the last part of Section 2 are interesting. In order to relate
the model we are discussing to the one for which the Kuhn-Tucker condi-

tions were derived in Secticn 1 of this chapter, we let

A

]

[Kl,K,...,A]
and

T= [lfl;Tg;-")T ] )

where Ti is a matrix with m rows, the same number of columns as Ai’

and with all its elements zero except for those in row 1, which are
all ones. This form for T is a consequence of the no-joint production
assumption which enables industry 1 to be identified with the produc-
tion of product 1i.

To proceed with the analysis and develop long-run properties of
optimal policies, it appears to be necessary to create conditions that
will imply that each product is produced during each period. The need
for this type of result will become obvious when we attempt to derive
the asymptotic path of the prices. The key to demonstrating this property
is to show that the first period-prices, pl(T), are bounded as the time

horizon T Dbecomes large. As we shall see, this will ensure that

eventually, for large enough T, each good is consumed in each period.

Lemma 3.6. Let pl(N) represent an optimal first-period price

vector for a program with N periods. Then, for fixed X € X with

xl>> 0, there exists a constant Kl such that any sequence of optimal

first-period price vectors < ﬁl(N) >0

Nel satisfying the adjoint condi-

tions satisfies:
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55| <K' for all N=1,2,...
Proof: We may rewrite the primal conditions, given in Section 3.1,

in the following form for a program with N periods:

N
max & 5t-l U(w, )
1 t

Avl + Wy < Xy

(1) - _
Avt + Wy < Tvt-l s t=2,...,N
v 2 O,‘wt >0, t=1,2,...,N

Let v(N) = (vl,vg,...,v Y, w(N) = (wl,wz,a..,wN), and form the

Lagrangian:

=

N
t-lU(wt) + (pl(xl—ﬁ§l—wl)) + 5 (pt(fvt_l— K&t-wt)) )

¢N(V)W:P) =3B 5

)_l

Then if v(N) and W(N)is an optimal N-period program, it is both

necessary and sufficient that there exist an optimal price sequence

< ﬁt >§=l , which satisfies the adjoint conditions of Section 3.1.

However, this implies that V(N), w(N) and pH(N) constitute a saddle

point of the lLagrangian in the sense that
(2)  p(v,w,B(N)) < p(¥H(W),%(N),B(N)) < B(¥(W),%(N),p))

for all p > 0 and feasible programs (v,w). It is clear that there is
an optimal program for which the constraints in (1) hold with equality

since U(+) 1is non-decreasing. Thus,

f
(]

X, - K§1(N) - ﬁl(N) =

and

'~

Tv

e (M) - Aﬁt(N) - ﬁt(N) 0, t=2,3...,N

13



Thus, from the first inequality of (2), we have

¥ g1 A1 - N _
287 U(w,) + B(N)(x)-Av,-w,) + T BT(N)(Tv,_;-Avy ;-w.) <
1 2

8"t (i ()

HM=

for all feasible v and w. In particular, we may take v = O and

w = 0 for any starting point Xy yielding

.
5h(m) x, < 2 8% Ui () -
1

Observing that this result must hold for any horizon N, and noting
that the existence of an optimal infinite horizon program implies that
N t-1

T B U(ﬁt(N)) approaches the finite limit f(xl), the value of the
1

infinite horizon program, we have
~1
p(N) x, < £(x;) for all N=1,2,...

and xl>> 0 implies 3 M independent of the horizon such that

137 (W) <M for N =1,2,...

Q.E.D.
Define a set of goods (? as primary consumption goods such that

i e C iff there exist k>0 such that

1

0
2 (w) >
i
whenever i € © and w 1is a vector of consumptions whose ith component

is zero. In order to establish the property that each good must be

produced in each period t for t large enough, we make two further
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assumptions!

AS5: The set C of primary consumption goods has the property that,
for each good j ¢ €, there is a good i € C such that j 1is directly

indispensable for the production of 1i.

A6: B/)b > 1, where p 1is the discount factor, and A_ = K(AO).

As an alternative to A6, which is an assumption placed jointly on
the technology and preference functions, we may substitute an assumption
that pertains more directly to the preference function and does not

involve the rate of discount or maximal growth.

A6': For each i e C , k, =+ =

Some remarks are probably in order about the assumptions. First,
the requirement that U(-) be dominated by a certain type of scalar
homogeneous function can be dispensed with if U(°) is bounded, since
in this case an optimal infinite horizon solution exists by the remarks
made following Theorem 2.1. If this is the case, then nc restrictions
are placed on B8 and xo by AbL. However, if we do need a restriction
of the type 5/xg <1 1in A4, it does not necessarily contradict the
condition of A6 that B/xo >1 as long as a < 1l. Since B 1is a
discount factor, i.e., B <1, fhe B/AO > 1 requirement of A6 assures
us that xo < 1. But since the von Neumann growth factor for this system
is P, = 1/xo, we see that Py > 1, implying that the system is capable
of expanding proportionately. This kind of assumption was made in most
of the previous work on growth models cited earlier. In our case, A6
requires the stronger assumption Bpo > 1. This may be interpreted
as implying that the system i1s capable of discounted proportional

expansion.
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One consequence of the definition of & primary consumption good is
to say that a good for which there exists & perfect substitute with
respect to the utility function U(:) cannot be a primary consumption
good. However, this concept does not rule out the existence of a
substitution effect between these and other goods, nor does it restrict
complementarity relationships. In fact, goods in ¢ may have perfect
complements in both Cf and ~ C . Furthermore, since U(°) is concave,
its partials are non-increasing, and thus we may choose the [ki}?:1 80
that

+k, >0 forall ic¢ C

b
%
=]
o?f%
==
H.

If all goods were in C., then of course assumption A5 would not be
necessary and the development would be simpler. However, it seems
advantageous to build a framework that does not require all goods to be
desirable for consumption, and in fact the utility function may be
independent of the level of consumption of certain commodities Both
assumptions, A6 and A6', serve to ensure that eventually all consumption

goods are consumed in each period of an optimal program.

Lemma 3.7. Under assumptions Al-A5 and A6 or A6', there is a time

horizon T* and a number t{ such that for all horizons T > TT every

primary consumption good is consumed in every period t > t¥ in every
optimal policy.
¥
Proof: We first prove the result under assumptions Al-A6. The

adjoint condition (b) of Section 3.1 implies that any sequence of optimal

T

prices <pt>t—l

satisfies

-

The method used is similar to one used by Morishima [16}].

Pt
Ne)




=y _ T+l t—
P

=

thus
t+1 t

Let the ith component of the von Neumann price vector po be denoted

by P and let PO be the 1 X m diagonal matrix whose diagonal
elements are Poy2e e s Pope Dafine
t,-t 3-1
=p A
Z(t) = p o B

and note that if <pt> satisfies the adjoint conditions, we have

7(t+1) < 2(s) P APt A,
- (o] o O o]

let L =1[1,1,...,1], an m-dimensional vector, and observe that

and consequently,

=
I

[
+d
=3

(o]

o
>

Now define

c(t) max[Zl(t),...,Zm(t)]

Since Z(t) < C(t)L, we have

1.,-1

o}

z(t+l) <c(t) L P A, P; AT o= o)L,
and thus <C(t)> is non-increasing and we may write
z(t) < c(L)L for all t = 1,2,...,T,
where T 1is the time horizon.
We now view C(l) as a function of the time horizon T and apply

Lemma 3.6 to establish the existence of a number C* independent of the

time horizon T, such that C(1) < C* for any T. This yields
z(t) <c* L,

[



or

Pt S C* Pl Kg for all t = 1,2,...,T,

where the right-hand side 1s independent of the time norizon T.

Since A6 implies that ho < 1, we have established that each compo-
nent of pt(T) goes to zero at geometrical rate xo, uniformly with
respect to the time horizon T. DNow look at any good 1 ¢ C . From
adjoint condition (&) of Section 3.1 and the result just obtained, we

have shown that in any optimal policy,

t
t t t-1 ou(w )
* -
(3) C¥p s A, > p;(T) > 8B o for t = 1,2,...,T .
Now choose k = min {ki} . Then
‘ ieC
au( )
(W) >k >0 forall ieC
awi -
No
and all consumption vectors w with Wi o= 0. However, B < 1l 1implies
A

o-1
that K*(—é—’-)E —~0 as to®, andths Jty such that for all t > ¥,

A
(%) K*(—BO—)t"L K.

Thus, if wf = 0 for some i ¢ C, the result in (4) would contradict
equation (3) if T > T#, and hence this condition cannot exist in an
optimal policy. Consequently, w: »0 for all ie (C and t > ¥
as long as T > TT. Q.E.D.
If assumption A6' is substituted for A6, then adjoint condition (a)
is immediately contradicted if W= O for some 1 e¢ € since é%&¥l =
+® for all 1 ¢ C with W= 0. ‘Thus, wf >0 for all ieC a;d

t = 1,2,...,T.

In the remainder of this section we shall assume that assumptions
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AL-A5 and either A6 or A6' hold, and thus all previously developed

results may be used freely.

Corollary 3.1. PFor all time horizons T greater than Tf every

good is produced during each pericd t for tf <t <1 under every
optimal policy.

Froof: Lemma 3.7 tells us that each good in C is consumed during
every period t ¢ [tf,T]. Thus, each good in C must be produced during
each of these periods. But assumption A5 tells us tnat for each good

J £ ¢ , there is a good i ¢ & for whose production Jj 1s indispensable;

consequently, each good must be produced in each of the above periods.
Q.E.D.

Corollary 3.2. There are integers Tf and tf such that, for all

time horizons T > Tf and all periods ti <t <7, we can find a square

matrix Ate Ci, a subset of the optimal activity set at time t, and

t T

an optimal price sequence < p >t—l such that
* <t ‘
4l N ot {for tl <t <T, and for all
(5) pTT =pA SpPA Y _
L Acec Q.
_ . G s . PO . S t+l
Proof: Using adjoint condition (b) of Section 1 we have p <

t —
PA forall t and A e (L. Since Corollary 3.1 tells us that each
good 1s produced when +t > tf, the same adjolint conditions gives the
equality
t4+L t
P

=D At)

where At containsg at least one column from each industry's activity

set since each good must be produced.
Lemma 3.8 (Morishima [16]): Given any cone N containing the price
ray pO in its interior, and any initial price pl, there exists a

9



N

neighborhood of pl and an integer t(pl) such that any path of prices
starting in the neighborhood of pl and satisfying (5) remains within
N for all t > t(pl).

Proof: The proof is given by Morishima in Lemmas 3 and 4, pages
16L-69. The development makes use of the fact, proven in Lemma 3.3, that
Kopo << pOA for all A € Q. such that no column of A is a column of

Ao, assumption A2, and Corollary 3.2.

Theorem 3.1. Under Assumptions Al-A5 and A6 or A6', if the time
horizon T is sufficiently large, there exists an integer T¥* such
that for t > T* the optimal activity set at time t denoted by At

is the set A .
o}

Proof: We have shown that xopo << pOA if A does not contain

any of the activities comprising AO. Since Kopo = pOAO, we have
<
pvo < poA

for all activity sets A that do not include any of the activities in
Ao. Thus, we can find a cone K containing P, in its interior for
which pAO << pA for all p € K and A, as above. For any initial
price pl, we can find a time t(pl) such that any price sequence
<pt> satisfying the adjoint conditions with initial element in a
neighborhood of pl remains within K for all ¢t > t(pl). As the set
of optimal first-period prices is bounded with a bound independent of
the time horizon, we can find a finite set of covering neighborhoods

by the Heine-Borel theorem. If these covering neighborhoods have centers
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11 1k

1
P ,...,0, we choose T¥ = max[t(pll),...,t(p k)

}. Thus, if T > T%,
every optimal price sequence remains in K for all t > T¥. But

pAO << pA Tfor p € K implies that none of the activities comprising

A can be operated at positive levels since the adjoint conditions
require equality in the appropriate price equation whenever a correspond-
ing primal variable is operated positively. Thus, no activity other than
those included in AO will be operated positively at time t where

™ < t <T.

Q.E.D.
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